-5+t^2=14

Simple and best practice solution for -5+t^2=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5+t^2=14 equation:



-5+t^2=14
We move all terms to the left:
-5+t^2-(14)=0
We add all the numbers together, and all the variables
t^2-19=0
a = 1; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·1·(-19)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*1}=\frac{0-2\sqrt{19}}{2} =-\frac{2\sqrt{19}}{2} =-\sqrt{19} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*1}=\frac{0+2\sqrt{19}}{2} =\frac{2\sqrt{19}}{2} =\sqrt{19} $

See similar equations:

| 4x+-7=-2x+17 | | 3^x+(3^x)*9=90 | | 3^x+3^(x+2)=90 | | 3^x+3^x+2=90 | | 4x+10=1/5 | | 110302=x+((x*1.10)*1.20) | | 4x+10/5x=1 | | 2(x-3)=6x-1 | | 110302=x+(x*1.32) | | 4(x+2)-3x=9x-24 | | 4+3(1/2-x/4)=2/3x-3 | | 3(x-3)+2=4(x+6) | | 12x=12x+33 | | 3(n-6=12 | | (1-2x)/2x=7/3/1 | | y=0.04/0.3^2 | | -3x^2-16x+14=0 | | 3x^2+16x-14=0 | | 17x^2-8050x+180000=0 | | 1-6x/3-3=1-5x/6 | | 3x-12/4=30-2x | | 3(x+4)/4=3x-9/8 | | 2/3x+1=1/7+x | | 22=2n+(2n+1) | | 2^x+2^1-x=4.5 | | 2x2-14x+24=0 | | 9y^2+10y+1=0 | | 19x+11=18x+24 | | 75=10050=x | | 8x-24=18x-24 | | X/3+x/6=4 | | 8x-5=-3(x+4)-15 |

Equations solver categories